Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

CdIn2S4 microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: Synthesis, characterizations and photocatalytic inactivation mechanisms

Identifieur interne : 001086 ( Main/Repository ); précédent : 001085; suivant : 001087

CdIn2S4 microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: Synthesis, characterizations and photocatalytic inactivation mechanisms

Auteurs : RBID : Pascal:13-0120168

Descripteurs français

English descriptors

Abstract

New types of visible-light-driven photocatalysts with high activity for bacterial inactivation are needed to address the problems caused by outbreak of harmful microorganisms. In this study, cadmium indium sulfide (CdIn2S4) microsphere, which can be synthesized continuously by a facile ultrasonic spray pyrolysis method, was used as an efficient photocatalyst in inactivation of Escherichia coli K-12 under visible light (VL) irradiation for the first time. The as-prepared CdIn2S4 showed a micro-spherical morphology with diameter of 0.5-1.0 μm. It had an energy band gap of 2.02 eV and BET surface area of 34.8 m2/g. It was found that bacterial cells could also be effectively inactivated inside a partition system without the direct contact with the photocatalyst, which was attributed to the diffusible photon-generated hydrogen peroxide (H202) rather than hydroxyl radicals (•OH). Large amounts of H2O2 were produced from both conduction and valance bands with the involvement of superoxide (•O2-). The used CdIn2S4 could be easily recycled by the partition system without loss of activity. The destruction process of bacterial cells was from the cell wall to the intracellular components as confirmed by TEM study. In addition, the •O2- and •OH radicals were also detected in the CdIn2S4-VL system by ESR spin-trap with DMPO trapping technology.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0120168

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">CdIn
<sub>2</sub>
S
<sub>4</sub>
microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: Synthesis, characterizations and photocatalytic inactivation mechanisms</title>
<author>
<name>WANJUN WANG</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>School of Life Sciences, The Chinese University of Hong Kong</s1>
<s2>Shatin, N.T.</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<placeName>
<settlement type="city">Sha Tin</settlement>
</placeName>
<orgName type="university">Université chinoise de Hong Kong</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wai Ng, Tsz" uniqKey="Wai Ng T">Tsz Wai Ng</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>School of Life Sciences, The Chinese University of Hong Kong</s1>
<s2>Shatin, N.T.</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<placeName>
<settlement type="city">Sha Tin</settlement>
</placeName>
<orgName type="university">Université chinoise de Hong Kong</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kei Ho, Wing" uniqKey="Kei Ho W">Wing Kei Ho</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Science and Environmental Studies, The Hong Kong Institute of Education</s1>
<s2>Taipo, N.T.</s2>
<s3>HKG</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Taipo, N.T.</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIANHUI HUANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Science and Environmental Studies, The Hong Kong Institute of Education</s1>
<s2>Taipo, N.T.</s2>
<s3>HKG</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Taipo, N.T.</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Environmental and Life Sciences, Putian University</s1>
<s2>Putian 351100</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Putian 351100</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHIJING LIANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>State Key Laboratory Breeding Base of Photocatalysis, Research Institute of Photocatalysis, Fuzhou University</s1>
<s2>Fuzhou 350002</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Fuzhou 350002</wicri:noRegion>
</affiliation>
</author>
<author>
<name>TAICHENG AN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>GUIYING LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, Jimmy C" uniqKey="Yu J">Jimmy C. Yu</name>
<affiliation wicri:level="4">
<inist:fA14 i1="06">
<s1>Department of Chemistry, The Chinese University of Hong Kong</s1>
<s2>Shatin, N.T.</s2>
<s3>HKG</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<placeName>
<settlement type="city">Sha Tin</settlement>
</placeName>
<orgName type="university">Université chinoise de Hong Kong</orgName>
</affiliation>
</author>
<author>
<name sortKey="Keung Wong, Po" uniqKey="Keung Wong P">Po Keung Wong</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>School of Life Sciences, The Chinese University of Hong Kong</s1>
<s2>Shatin, N.T.</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<placeName>
<settlement type="city">Sha Tin</settlement>
</placeName>
<orgName type="university">Université chinoise de Hong Kong</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0120168</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0120168 INIST</idno>
<idno type="RBID">Pascal:13-0120168</idno>
<idno type="wicri:Area/Main/Corpus">001116</idno>
<idno type="wicri:Area/Main/Repository">001086</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0926-3373</idno>
<title level="j" type="abbreviated">Appl. catal., B Environ.</title>
<title level="j" type="main">Applied catalysis. B, Environmental</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria</term>
<term>Bacterial inactivation</term>
<term>Cadmium Sulfides</term>
<term>Characterization</term>
<term>Environmental protection</term>
<term>Heterogeneous catalysis</term>
<term>Hydrogen peroxide</term>
<term>Inactivation</term>
<term>Indium Sulfides</term>
<term>Mechanism</term>
<term>Microorganism</term>
<term>Microparticle</term>
<term>Microsphere</term>
<term>Partition</term>
<term>Photocatalysis</term>
<term>Photocatalyst</term>
<term>Spherical particle</term>
<term>Spray pyrolysis</term>
<term>Synthesis</term>
<term>Ternary compound</term>
<term>Ultrasound</term>
<term>Visible radiation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Microsphère</term>
<term>Particule sphérique</term>
<term>Microparticule</term>
<term>Synthèse</term>
<term>Caractérisation</term>
<term>Photocatalyse</term>
<term>Mécanisme</term>
<term>Ultrason</term>
<term>Partition</term>
<term>Peroxyde d'hydrogène</term>
<term>Catalyse hétérogène</term>
<term>Protection environnement</term>
<term>Cadmium Sulfure</term>
<term>Indium Sulfure</term>
<term>Composé ternaire</term>
<term>Rayonnement visible</term>
<term>Microorganisme</term>
<term>Bactérie</term>
<term>Inactivation</term>
<term>CdIn2S4</term>
<term>Photocatalyseur</term>
<term>Pyrolyse par pulvérisation</term>
<term>Inactivation des bactéries</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">New types of visible-light-driven photocatalysts with high activity for bacterial inactivation are needed to address the problems caused by outbreak of harmful microorganisms. In this study, cadmium indium sulfide (CdIn
<sub>2</sub>
S
<sub>4</sub>
) microsphere, which can be synthesized continuously by a facile ultrasonic spray pyrolysis method, was used as an efficient photocatalyst in inactivation of Escherichia coli K-12 under visible light (VL) irradiation for the first time. The as-prepared CdIn
<sub>2</sub>
S
<sub>4</sub>
showed a micro-spherical morphology with diameter of 0.5-1.0 μm. It had an energy band gap of 2.02 eV and BET surface area of 34.8 m
<sup>2</sup>
/g. It was found that bacterial cells could also be effectively inactivated inside a partition system without the direct contact with the photocatalyst, which was attributed to the diffusible photon-generated hydrogen peroxide (H
<sub>2</sub>
0
<sub>2</sub>
) rather than hydroxyl radicals (•OH). Large amounts of H
<sub>2</sub>
O
<sub>2</sub>
were produced from both conduction and valance bands with the involvement of superoxide (•O
<sub>2</sub>
<sup>-</sup>
). The used CdIn
<sub>2</sub>
S
<sub>4</sub>
could be easily recycled by the partition system without loss of activity. The destruction process of bacterial cells was from the cell wall to the intracellular components as confirmed by TEM study. In addition, the •O
<sub>2</sub>
<sup>-</sup>
and •OH radicals were also detected in the CdIn
<sub>2</sub>
S
<sub>4</sub>
-VL system by ESR spin-trap with DMPO trapping technology.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0926-3373</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. catal., B Environ.</s0>
</fA03>
<fA05>
<s2>129</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>CdIn
<sub>2</sub>
S
<sub>4</sub>
microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: Synthesis, characterizations and photocatalytic inactivation mechanisms</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WANJUN WANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WAI NG (Tsz)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KEI HO (Wing)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JIANHUI HUANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SHIJING LIANG</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>TAICHENG AN</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>GUIYING LI</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>YU (Jimmy C.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>KEUNG WONG (Po)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Life Sciences, The Chinese University of Hong Kong</s1>
<s2>Shatin, N.T.</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Science and Environmental Studies, The Hong Kong Institute of Education</s1>
<s2>Taipo, N.T.</s2>
<s3>HKG</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Environmental and Life Sciences, Putian University</s1>
<s2>Putian 351100</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>State Key Laboratory Breeding Base of Photocatalysis, Research Institute of Photocatalysis, Fuzhou University</s1>
<s2>Fuzhou 350002</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Department of Chemistry, The Chinese University of Hong Kong</s1>
<s2>Shatin, N.T.</s2>
<s3>HKG</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>482-490</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18840B</s2>
<s5>354000506373060530</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>52 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0120168</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied catalysis. B, Environmental</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>New types of visible-light-driven photocatalysts with high activity for bacterial inactivation are needed to address the problems caused by outbreak of harmful microorganisms. In this study, cadmium indium sulfide (CdIn
<sub>2</sub>
S
<sub>4</sub>
) microsphere, which can be synthesized continuously by a facile ultrasonic spray pyrolysis method, was used as an efficient photocatalyst in inactivation of Escherichia coli K-12 under visible light (VL) irradiation for the first time. The as-prepared CdIn
<sub>2</sub>
S
<sub>4</sub>
showed a micro-spherical morphology with diameter of 0.5-1.0 μm. It had an energy band gap of 2.02 eV and BET surface area of 34.8 m
<sup>2</sup>
/g. It was found that bacterial cells could also be effectively inactivated inside a partition system without the direct contact with the photocatalyst, which was attributed to the diffusible photon-generated hydrogen peroxide (H
<sub>2</sub>
0
<sub>2</sub>
) rather than hydroxyl radicals (•OH). Large amounts of H
<sub>2</sub>
O
<sub>2</sub>
were produced from both conduction and valance bands with the involvement of superoxide (•O
<sub>2</sub>
<sup>-</sup>
). The used CdIn
<sub>2</sub>
S
<sub>4</sub>
could be easily recycled by the partition system without loss of activity. The destruction process of bacterial cells was from the cell wall to the intracellular components as confirmed by TEM study. In addition, the •O
<sub>2</sub>
<sup>-</sup>
and •OH radicals were also detected in the CdIn
<sub>2</sub>
S
<sub>4</sub>
-VL system by ESR spin-trap with DMPO trapping technology.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01A03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01J02</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001C01F01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Microsphère</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Microsphere</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Microsfera</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Particule sphérique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Spherical particle</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Partícula esférica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Microparticule</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Microparticle</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Micropartícula</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Synthèse</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Synthesis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Síntesis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Caractérisation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Characterization</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Caracterización</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Photocatalyse</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Photocatalysis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Fotocatálisis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Mécanisme</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Mechanism</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Mecanismo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Ultrason</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Ultrasound</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Ultrasonido</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Partition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Partition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Partición</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Peroxyde d'hydrogène</s0>
<s2>NK</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Hydrogen peroxide</s0>
<s2>NK</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Peróxido de hydrogeno</s0>
<s2>NK</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Catalyse hétérogène</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Heterogeneous catalysis</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Catálisis heterogénea</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Protection environnement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Environmental protection</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Protección medio ambiente</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Cadmium Sulfure</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Cadmium Sulfides</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Cadmio Sulfuro</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Indium Sulfure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Indium Sulfides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Indio Sulfuro</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Rayonnement visible</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Visible radiation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Radiación visible</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Microorganisme</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Microorganism</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Microorganismo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Bactérie</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Bacteria</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Bacteria</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Inactivation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Inactivation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Inactivación</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>CdIn2S4</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Photocatalyseur</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Photocatalyst</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Pyrolyse par pulvérisation</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Spray pyrolysis</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Inactivation des bactéries</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Bacterial inactivation</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fN21>
<s1>098</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001086 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001086 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0120168
   |texte=   CdIn2S4 microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: Synthesis, characterizations and photocatalytic inactivation mechanisms
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024